A visualization of a Vlasov-Poisson simulation for a bump-on-tail instability problem, where a non-equilibrium distribution of electrons drives an electrostatic wave. The image shows particle density as a function of space and velocity. (Jeffrey Hittinger, Lawrence Livermore National Laboratory.)

Lawrence Livermore National Laboratory (LLNL) computational scientist Jeffrey Hittinger spends his life at extremes. On the job, he focuses on the physics of plasmas – searing clouds of speedy ions and electrons – for fusion energy. Outside work, he tends goal for a San Francisco Bay-area amateur hockey team. Instead of simulating flying particles, he’s blocking or catching flying pucks.

His two interests share a fast pace – extraordinarily fast for plasmas – and a challenging nature. “I’m attracted to difficult things,” Hittinger says, then laughs. “I’m a goalie, so maybe I’m interested in difficult, high-pressure things.”

Likewise, “we get to work on hard problems” at the lab’s Center for Advanced Scientific Computing (CASC), Hittinger says. And like pucks flying in from unexpected directions, “there are always new problems coming at you.”

Hittinger, a Department of Energy Computational Science Graduate Fellowship (DOE CSGF) recipient from 1996 to 2000, creates and tweaks computer algorithms that emulate and elucidate aspects of some of the world’s most complex experiments.

“It’s a mixture of my background and what I stumbled into when I came to the lab,” Hittinger says. As a graduate student, he used gas kinetics to model fluid mechanics. Lab personnel recruited him to improve fluid plasma models for laser-driven inertial confinement fusion (ICF), the goal of the National Ignition Facility (NIF).

In NIF’s stadium-sized building, powerful lasers shoot into a hohlraum, a thimble-sized container holding a BB-sized capsule of frozen hydrogen isotopes. The laser pulse generates powerful X-rays, imploding the pellet with tremendous pressure and heat. The hydrogen atoms fuse, releasing energy in a process similar to that powering the sun.

“For ICF to work, you have to get a nice, clean implosion,” Hittinger says. “To do that, you need all the energy you’re putting into the system to go where you want it to go.” Plasma, however, can interact with the lasers, scattering or reflecting them.

Page: 1 2

Thomas R. O'Donnell

The author is a former Krell Institute science writer.

Share
Published by
Thomas R. O'Donnell

Recent Posts

Genomic field work

A UC Davis fellow combines computing, the corn genome and growing data to help farmers… Read More

March, 2024

Tracking space debris

 A Computational Science Graduate Fellowship recipient monitors threats to satellites in Earth’s ionosphere by modeling… Read More

February, 2024

Decisive achievement

A computational sciences fellow models COVID-19 virus variants and examines how people weigh complex decisions. Read More

October, 2023

Learning climate

A Colorado State fellow employs machine learning for climate modeling, putting provenance behind predictions. Read More

August, 2023

Statistically significant

A LANL statistician helps cosmologists and epidemiologists grasp their data and answer vital questions. Read More

July, 2023

Cutting carbon, blocking blooms

Besides bioplastics research, the LANL Biofuels and Bioproducts team is studying carbon neutrality and applying… Read More

June, 2023